




LB -KB Delta absolute filters are deep pleated, with top quality construction, limited pressure drop, high dust holding capacities, strong mechanical resistance and are long-lasting. These filters are made of two materials different from the one used for the frame: MDF wood (LB) and galvanized steel (KB). Both have a special single piece gasket. They come in two different depths: 149 and 292 mm which allow face air speeds of 0.75 and 1.5 m/s respectively. All the filters are tested individually and labeled to assure the compliance with the measured features.

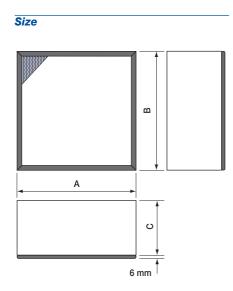
## LB - KB DELTA series absolute filters for duct flows

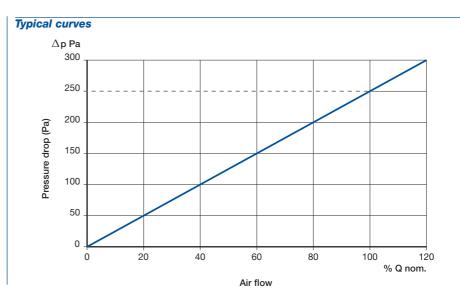
| Product                       | LB      | KB      |
|-------------------------------|---------|---------|
| MPPS efficiency *             | 99,95 % | 99,95 % |
| CEN EN 1822 classification    | H 13    | H 13    |
| Suggested final pressure drop | 600 Pa  | 600 Pa  |
| Maximum pressure drop         | 1000 Pa | 1000 Pa |
| Maximum operating temperature | 90 °C   | 100 °C  |
| Maximum relative humidity     | 90 %    | 100 %   |

\* Average efficiency. Punctual efficiency has an admitted penetration rate 5 times higher.

## **Applications**

LB and KB filters can be used in various applications:


- final stage of air treatment units for rooms with cleanness class M4 and M5 (FS 290E)
- protection stage for very high efficiency filters (ULPA)
- in Canister systems to assure the required emission levels of exhausted air
- in line in Modulo systems to improve
- the efficiency of filtration systems
- in DIF.K/DIF.S terminal hoods in controlled contamination rooms.


## Installation

No matter what is the installation position, LB and KB filters always allow for the use of the entire filtration surface. We suggest installing the proper high-efficiency pre-filters to increase their operating life. On request we also supply frames and housings to improve and simplify the installation of the filters. Models LB can be burned completely.

| Type Sizes (mm) |     |   |     |   |     | Nominal air flow rate Q. |            |     |     | Filtering |       | Initial       |
|-----------------|-----|---|-----|---|-----|--------------------------|------------|-----|-----|-----------|-------|---------------|
| LB              |     |   |     |   |     |                          | KB         | LB  | KB  | surfa     | ce m² | pressure drop |
| KB              | А   | В |     | С | m   | ³/h                      | m³/sx10-3* |     | LB  | KB        | Ра    |               |
| 04              | 005 |   | 005 |   | 000 | 500                      | 550        | 100 | 450 | 4 7       | 4.0   | 050           |
| 31              | 305 | Х | 305 | Х | 292 | 500                      | 550        | 139 | 153 | 4,7       | 4,9   | 250           |
| 53              | 457 | х | 457 | х | 292 | 1200                     | 1320       | 333 | 366 | 10,4      | 10,9  | 250           |
| 52              | 305 | х | 610 | х | 292 | 1000                     | 1100       | 278 | 306 | 9,3       | 9,7   | 250           |
| 5               | 610 | х | 610 | х | 292 | 2000                     | 2200       | 555 | 612 | 19        | 20    | 250           |
| 6               | 762 | х | 610 | х | 292 | 2500                     | 2750       | 694 | 764 | 23,5      | 25    | 250           |
| 55              | 289 | х | 595 | Х | 292 | 950                      | -          | 264 | -   | 8,8       | -     | 250           |
| 54              | 595 | х | 595 | х | 292 | 1900                     | -          | 528 | -   | 18,2      | -     | 250           |
| 3               | 305 | х | 305 | Х | 149 | 270                      | -          | 75  | -   | 2,2       | -     | 250           |
| 43              | 457 | х | 457 | Х | 149 | 620                      | -          | 172 | -   | 5         | -     | 250           |
| 42              | 305 | х | 610 | Х | 149 | 550                      | 600        | 153 | 166 | 4,5       | 4,7   | 250           |
| 4               | 610 | Х | 610 | х | 149 | 1080                     | 1190       | 300 | 330 | 9,5       | 9,8   | 250           |
|                 |     |   |     |   |     |                          |            |     |     |           |       |               |

\*1 m<sup>3</sup>/s x 10<sup>-3</sup> = 1 l/s



