



## **CAB**

## CARBOFILT cartridge activated carbon cells

| Product                                         | CAB              |
|-------------------------------------------------|------------------|
| Maximum air flow rate                           | 110 % of nominal |
| Maximum operating temperature                   | 60 °C            |
| Maximum relative humidity                       | 60 %             |
| Applications: odors, steam and organic solvents | Carbon type 2.0  |
| Applications: acid gas, H2S, SO2, etc.          | Carbon type 2.1  |

CAB model cartridge activated carbon filters remove the bad odors generally present in civil facilities and the vapors produced by industrial processes.

They are made of a galvanized steel sheet cartridge and micro-drawn grids containing vegetable activated carbon installed in a galvanized sheet frame.

The air containing odors and gas passes through the activated carbons inside the cylinders and comes out purified and odorless. Before passing through activated carbons, the air must be properly filtered to remove all the dust and the particles that could clog the carbons.

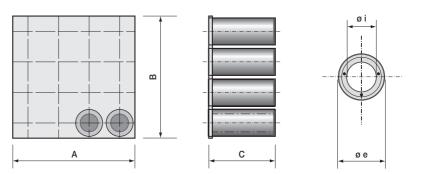
CAB filters have average activated carbon quantities and are suitable for average odor concentration levels. They have a low pressure drop and this reduces fan energy consumption levels. The activated carbons can be regenerated by using vapor.

**Applications** CAB carbon activated filters are recommended for most of the conditioning and ventilation units in civil facilities, to improve the quality of the air.

hey contribute to the reduction of external ventilation air flow, hence they significantly limit energy consumption levels. They are used in air treatment plants, in top roof conditioning units and in ventilation units, downstream of high efficiency pre-filters which protect them from dust build-up.

Installation As for all other types of filters during installation it is very important to avoid any air by-pass around the activated carbon filter. CAB filters can also be used in duct housing in Multimod elements. The installation position of the filter can be either horizontal or vertical. To establish the end of the operating life of the filter (saturation of carbons), you need to foresee connections both upstream and downstream of the filter for olfactory evaluations of the air.

| Code     | Туре   | Sizes (mm) |   |     |   |     | Nominal air | flow rate Q.          | Initial presure drop | Weight | Carbon cont. | Cartridge |  |
|----------|--------|------------|---|-----|---|-----|-------------|-----------------------|----------------------|--------|--------------|-----------|--|
| CAB      | carbon | А          |   | В   |   | С   | m³/h        | m³/sx10 <sup>-3</sup> | Pa                   | kg     | dm³          | n°        |  |
| 12 / 2.0 | P 2.0  | 600        | Х | 300 | Х | 300 | 700         | 194                   | 200                  | 16     | 17           | 3         |  |
| 2 / 2.0  | P 2.0  | 600        | Х | 600 | Х | 300 | 1800        | 500                   | 200                  | 38     | 51           | 9         |  |
| 32 / 2.0 | P 2.0  | 600        | Х | 300 | Х | 400 | 1000        | 278                   | 200                  | 20     | 23           | 3         |  |
| 4 / 2.0  | P 2.0  | 600        | Х | 600 | Х | 400 | 2700        | 750                   | 200                  | 52     | 69           | 9         |  |
| 5 / 2.0  | P 2.0  | 800        | Х | 800 | Х | 400 | 4500        | 1250                  | 200                  | 86     | 122          | 16        |  |
| 6 / 2.0  | P 2.0  | 800        | Х | 400 | Х | 400 | 2250        | 625                   | 200                  | 50     | 61           | 8         |  |


\*1  $m^3/s \times 10^{-3} = 1 \text{ l/sec.}$ 

|                          | øе  |   | øί |   | С   |  |
|--------------------------|-----|---|----|---|-----|--|
| Spare-parts cartridges – | 180 | Х | 90 | Х | 300 |  |
| Spare-parts cartridges – | 180 | Х | 90 | Х | 400 |  |

| C  | Code   | Type   |     |   |     |   |     | Nominal air | flow rate Q. | Initial       | Weight | Carbon | Cartridge |  |
|----|--------|--------|-----|---|-----|---|-----|-------------|--------------|---------------|--------|--------|-----------|--|
|    |        |        |     |   |     |   |     |             |              | pressure drop |        | cont.  |           |  |
|    | PT     | carbon | Α   |   | В   |   | С   | m³/h        | m³/sx10-3*   | Pa            | kg     | dm³    | n°        |  |
|    |        |        |     |   |     |   |     |             |              |               |        |        | _         |  |
| 1  | 0/6    | P 2.0  | 305 | Х | 610 | Χ | 400 | 1200        | 333          | 220           | 22     | 27     | 6         |  |
| 1  | 0/8    | P 2.0  | 305 | Х | 610 | Х | 400 | 1400        | 390          | 220           | 29     | 36     | 8         |  |
| 20 | 7 / 12 | P 2.0  | 610 | Х | 610 | Х | 400 | 2400        | 666          | 220           | 44     | 54     | 12        |  |
| 20 | 7 / 16 | P 2.0  | 610 | Х | 610 | Х | 400 | 2800        | 780          | 220           | 58     | 72     | 16        |  |
|    |        |        |     |   |     |   |     |             |              |               |        |        |           |  |

\*1  $m^3/s \times 10^{-3} = 1 \text{ l/sec.}$ 

Size



268